Sphingidae Taxonomic Inventory

Creating a taxonomic e-science

Body size affects the evolution of eyespots in caterpillars

Publication Type:Journal Article
Year of Publication:2015
Authors:T. J. Hossie, Skelhorn, J., Breinholt, J. W., Kawahara, A. Y., Sherratt, T. N.
Journal:Proceedings of the National Academy of Sciences
Start Page:6664
Date Published:05/2015

"Many caterpillars have conspicuous eye-like markings, called eyespots. Despite recent work demonstrating the efficacy of eyespots in deterring predator attack, a fundamental question remains: Given their protective benefits, why have eyespots not evolved in more caterpillars? Using a phylogenetically controlled analysis of hawkmoth caterpillars, we show that eyespots are associated with large body size. This relationship could arise because (i) large prey are innately conspicuous; (ii) large prey are more profitable, and thus face stronger selection to evolve such defenses; and/or (iii) eyespots are more effective on large-bodied prey. To evaluate these hypotheses, we exposed small and large caterpillar models with and without eyespots in a 2 × 2 factorial design to avian predators in the field. Overall, eyespots increased prey mortality, but the effect was particularly marked in small prey, and eyespots decreased mortality of large prey in some microhabitats. We then exposed artificial prey to naïve domestic chicks in a laboratory setting following a 2 × 3 design (small or large size × no, small, or large eyespots). Predators attacked small prey with eyespots more quickly, but were more wary of large caterpillars with large eyespots than those without eyespots or with small eyespots. Taken together, these data suggest that eyespots are effective deterrents only when both prey and eyespots are large, and that innate aversion toward eyespots is conditional. We conclude that the distribution of eyespots in nature likely results from selection against eyespots in small caterpillars and selection for eyespots in large caterpillars (at least in some microhabitats)."

Taxonomic name: 
Scratchpads developed and conceived by (alphabetical): Ed Baker, Katherine Bouton Alice Heaton Dimitris Koureas, Laurence Livermore, Dave Roberts, Simon Rycroft, Ben Scott, Vince Smith