Sphingidae Taxonomic Inventory

Creating a taxonomic e-science

Higher-order neural processing tunes motion neurons to visual ecology in three species of hawkmoths

Publication Type:Journal Article
Year of Publication:2017
Authors:A. L. Stöckl, O'Carroll, D. C., Warrant, E. J.
Journal:Proceedings of the Royal Society B
Volume:284
Start Page:20170880
Pagination:20170880
Date Published:06/2017
Type of Article:Early view
Keywords:DEILEPHILA, ECOLOGY, MACROGLOSSUM, MANDUCA, NEURAL SUMMATION, PHYSIOLOGY, SPHINGIDAE, VISION, VISUAL PROCESSING
Abstract:

"To sample information optimally, sensory systems must adapt to the ecological demands of each animal species. These adaptations can occur peripherally, in the anatomical structures of sensory organs and their receptors; and centrally, as higher-order neural processing in the brain. While a rich body of investigations has focused on peripheral adaptations, our understanding is sparse when it comes to central mechanisms. We quantified how peripheral adaptations in the eyes, and central adaptations in the wide-field motion vision system, set the trade-off between resolution and sensitivity in three species of hawkmoths active at very different light levels: nocturnal Deilephila elpenor, crepuscular Manduca sexta, and diurnal Macroglossum stellatarum. Using optical measurements and physiological recordings from the photoreceptors and wide-field motion neurons in the lobula complex, we demonstrate that all three species use spatial and temporal summation to improve visual performance in dim light. The diurnal Macroglossum relies least on summation, but can only see at brighter intensities. Manduca, with large sensitive eyes, relies less on neural summation than the smaller eyed Deilephila, but both species attain similar visual performance at nocturnal light levels. Our results reveal howthe visual systems of these three hawkmoth species are intimately matched to their visual ecologies."

URL:http://dx.doi.org/10.1098/rspb.2017.0880
Scratchpads developed and conceived by (alphabetical): Ed Baker, Katherine Bouton Alice Heaton Dimitris Koureas, Laurence Livermore, Dave Roberts, Simon Rycroft, Ben Scott, Vince Smith